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Perturbation Methods in Stability and Norm Analysis of
Spatially Periodic Systems

Makan Fardad and Bassam Bamieh

Abstract

We consider systems governed by partial differential equations with spatially periodic coefficients over un-
bounded domains. These spatially periodic systems are considered as perturbations of spatially invariant ones, and
we develop perturbation methods to study their stability affdsystem norm. The operator Lyapunov equations
characterizing thé¢> norm are studied using a special frequency representation, and formulae are given for the
perturbation expansion of their solution. The structure of these equations allows for a recursive method for solving
for the expansion terms. Our analysis provides conditions that capture possible resonances between the periodic
coefficients and the spatially invariant part of the system. These conditions can be regarded as useful guidelines
when spatially periodic coefficients are to be designed to increase/decreddé tiam of a spatially distributed
system. The developed perturbation framework also gives simple conditions for checking exponential stability.

I. INTRODUCTION

The terms distributed-parameter and infinite-dimensional are used to describe those systems in which the state
belongs to an infinite dimensional vector space [1]. Such systems include, but are not limited to, time-delay
(retarded) and spatially distributed systems [2]. The latter includes systems in which the dynamics are governed
by Partial Differential Equations (PDEs) and it is a subclass of these systems that will be the subject of this study.
More specifically, we will analyze certain properties of spatially distributed systems in which the underlying PDEs
have spatially periodic coefficients. We refer to such systenspasally periodic Spatially periodic systems have
many real life applications, for example, in boundary layer and channel flow problems with corrugated walls and
in nonlinear optics.

Our motivation for this work is to study the effect of spatially periodic coefficients on stability and system
norms of spatially distributed systems. This can be thought of as using the periodic coefficients as static feedback
controls for spatially distributed systems. For example, in flow control problems where one introduces corrugated
wall geometries or spatially periodic body forces, the PDESs that describe the resulting flow dynamics have periodic
coefficients that are related to either the wall shapes or the spatially distributed body forces. An important objective
is to “design” such wall shapes or body forces to obtain certain stability or instability properties of the resulting
dynamics. There are currently no systematic methods for achieving this.

An analogy can be made between the present work and the use of time-periodic coefficients in Ordinary
Differential Equations (ODEs). It is known that the introduction of time-periodic coefficients in ODEs with
constant coefficients can change the stability properties of the Linear Time Invariant (LTI) system described by
the original ODE. A useful picture is to think of an ODE with periodic coefficients as an LTI system modified
by time-periodic (memoryless) feedback. It is known that certain unstable LTI systems can be stabilized by being
put in feedback with periodic gains of properly designed amplitudes and frequencies [3]. This can be roughly
considered as an example of “vibrational control” [4]. On the other hand, certain stable or neutrally stable LTI
systems can be destabilized by periodic feedback gains. This is sometimes referred to as “parametric resonance
in the dynamical systems literature [3]. In the above scenarios, the stabilization/destabilization process depends in
subtle ways on “resonances” between the natural modes of the LTI subsystem and the frequency and amplitude
of the periodic feedback. Although Floquet analysis can be used to ascertain stability of the resulting periodic
systems, it is cumbersome to use fbesigningthe periodic coefficients. This requires an exhaustive search
over frequencies and amplitudes of the periodic coefficients. Alternatively, simple resonance conditions can be
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derived using a perturbation analysis [3], which in turn can be used for a preliminary selection of the coefficient’'s
frequency. In this way, perturbation analysis serves as a useful design tool.

In related recent work [5] we developed computational tools to study stability and system norms for spatially
periodic systems. However, for problems where the spatially periodic coefficients are to be designed, using these
tools involves a computationally expensive search over spatial frequencies and amplitudes of the coefficients.
Therefore, our aim in the present work is to develop a perturbation analysis that can be used to derive resonance
conditions and provide a useful design tool in a similar manner to the case of ODEs discussed earlier. These
resonance conditions can then identify candidate spatial frequencies to be used for the periodic coefficients. The
exact behavior with respect to amplitudes can then be ascertained using the full analysis of [5]. In this manner
we reduce the dimension of the search space required for design problems.

Another challenging problem is checking the stability of a spatially periodic, or in general, any infinite-
dimensional system. It is well-known that for a finite-dimensional LTI system, the spectrum of the infinitesimal
generator (i.e., thel-matrix) being contained in the open left half of the complex plane is equivalent to exponential
stability. In this sense the spectrum of the infinitesimal generator determines stability. Therefore it is said that
the system satisfies tt&pectrum Determined Growth Conditig8DGC). But the SDGC may not hold for some
infinite-dimensional LTI systems; indeed the evolution can grow exponentially even though the infinitesimal
generator (thed-operator) has spectrum inside the left half of the complex plane [6]-[8]. In the present work we
use perturbation analysis to find simple conditions under which the spatially periodic system satisfies the SDGC
and is exponentially stable.

Our presentation is organized as follows. Section Il outlines the main results of the paper. Section Il briefly
reviews the frequency representation of spatially periodic operators. Section IV introduces the problem setup.
Section V discusses the analytic perturbation offenorm and Section VI provides related illustrative examples.
Section VIl studies conditions under which a spatially periodic system is exponentially stable. Many proofs and
technical details have been relegated to the Appendix to improve readability.

Notation

We usek € R to characterize the spatial-frequency variable, also known asvéve-numberX(T) is the
spectrum of the operatdf’, and X,(7") its point spectrump(T) its resolvent set, and?((,7") its resolvent
operator(¢ —T)~1. C~ denotes all complex numbers with real part less than zero,jardy/—1. *' denotes
the complex-conjugate transpose, and also the adjoint of a linear op&aithe closure of the se& c C. We
will use the same notatiod for an operator and it's kernel representation. The spatio-temporal functiom)
(operator A) is denoted byi(t, k) (respectively A) after the application of a Fourier transform on the spatial
variable z. Where there is no chance of confusion, we use the same notation for a spatially invariant operator
and its Fourier symbol.

Terminology

Throughout the paper, we use the tergmatial ‘operators’and spatial ‘systems’By the former, we mean
a purely spatialsystem with no temporal dynamics (i.e. a memoryless operator that acts on a spatial function
and yields a spatial function), whereas the latter refers gpatio-temporalsystem (a system with an internal
state evolves on some spatial domain, i.e., for every tintfee state is a function on a spatial domain). When
spatially periodic feedback operators are small in norm, we will use the phpaseslic feedbacland periodic
perturbationinterchangeably. We use the teure point spectrunfor equivalentlydiscrete spectruinto mean
that the spectrum of an operator consists entirelysofatedeigenvalues [9]. By &calar system, we mean that
the Euclidean dimension of the state is equal to one.

I[l. MAIN RESULTS

We consider systems described by linear, time-invariant, integro partial differential equations defined on an
unbounded one dimensional domain. We use a standard state-space representation of the form

[0 ¢](t,2) = [AY](t,x) + [Bul(t,z),
y(t,x) = [Cw](tvx)v (1)
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wheret € [0,00) andz € R, %, u, y are spatio-temporal functions, ant] B, C are spatial integro-differential
operators with coefficients that are periodic functions with a common peXiodVe refer to such systems as
spatially periodic

It is often physically meaningful to regard the spatially periodic operators as additive or multiplicative per-
turbations of spatially invariant ones [and by spatially invariant we mean integro-differential operators with
constant coefficients]. For example, the generator in (1) can often be decomposkd=ad® + ¢F, where
A° is a spatially invariant operator anfl is an operator that includes multiplication by periodic functions. In
some control applications, the operatoris something to be “designed”. Therefore it is desirable to have easily
verifiable conditions for stability and norms of such systems. This would then allow for the selection of the spatial
period and amplitude of to achieve the desired behavior. The perturbation analysis we present, though limited
to small values of, provides useful results for selecting candidate “periods”Hor

Our analysis and results are derived using a special frequency representation. We show that the spatial periodicity
of the operatorsd, B and C implies that (1) can be rewritten as

[0:ol(t) = [Agthe](t) + [Bouel(t),
ya(t) = [Coto](1), 2

where§ € [0,27/X); for every value of, vy, ug, yo are bi-infintie vectors, any, By, Cy are bi-infinite
matrices. The systems (2) and (1) are related through a unitary transformation, and in particular quadratic forms
and norms are preserved by this transformation. Consequently, stability and quadratic norm properties of (2) and
(1) are equivalent. With this transformation, the analysis of the original system (1) is reduced to that of the family
of systems (2) that ardecoupledn the parametef. In particular, perturbation analysis for (2) is easier and less
technical than that for the original system (1).

To make for easier reading we first present the results on perturbation analysis?¢t-therm, and then deal
with the issue of stability.

For a large class of infinite-dimensional systems, computingth@orm involves solving aoperatoralgebraic
Lyapunov equation

AP + PA* = —BB".

In general this is a difficult task that must be done using appropriate discretization techniques. However, in the
case whem and B are spatially periodic operators, then so is the solufftorThus the frequency representation
implies that this operator Lypunov equation is equivalent to the decoupled family of matrix Lyapunov equations

AgPy + Po Ay = —Bg By, 3

where Ay, By and Py are the bi-infinite matrix representations 4f B and P. OnceP; is found, theH2-norm
of the system can be computed from [5]

1
— / trace[CoPo Cp] db, Q=2r/X.
2m Jo

Solving (3) is still a difficult problem in general since it involves bi-infinite matrices. We use perturbation
analysis as follows: the generator is expressedias= AJ + €& where A and & correspond to the spatially
invariant and spatially periodic components respectively. It follows that the sol@jois analytic ine and the
terms of its power series expansion (denotedPéS}) satisfy a sequence of forward coupled Lyapunov equations.
Furthermore, the term@é” are banded matrices, with the number of bands increasing with the indéhese
Lyapunov equations can then be solved recursivelyifer 0,1,2,.... Formulae for these representations and
the corresponding sequence of Lyapunov equations are given in Section V. In some examples that we present
in Section VI, these formulae lead to simple “resonance” conditions for stabilization or destabilization of PDEs
using spatially periodic feedback.

The second set of results concern the problem of stability. As mentioned in the Introduction, Avieen
an infinite-dimensional operator it is possible that its spectfi() lies inside C~, and yet ||| grows
exponentially [6]-[8]. In such cases it is said that #pectrum-determined growth conditigg not satisfied [8].

Yet there exists a wide range of infinite-dimensional systems for which the spectrum-determined growth condition
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Fig. 1. Left: Pictorial representation Qﬁ‘ k) = fR w(n) dk. Right: The frequency kernel of a spatially periodic operatod.

is satisfied. These include (but are not limited to) systems for whichAttoperator issectorial (also known as
an operator which generateshalomorphicor analytic semigroup) [9]-[11] or is &eisz-spectrabperator [2]. In
this paper we focus on sectorial operators.
Thus to establish exponential stability of a system, one possibility would be to show simultaneously that

(i) A is sectorial,

(i) X(A) liesinC~.

But this still does not make the problem trivial. In fact proving that an infinite-dimensional operator is sectorial,
and then finding its spectrum, can in general be extremely difficult.

Once again we use perturbation methods to show (i) and (ii). We condiderhave the formAd = A° + ¢ F
where A° is a spatially invariant operato#’ is a spatially periodic operator, ardis a small complex scalar.
Using the bi-infinite matrix representation, we first find conditions on the spatially invariant opetatsuch
that (i) and (ii) are satisfied. We then show that (i) and (ii) wélimain satisfied ife is small enough and if the
spatially periodic operatoF is ‘weaker’ thanA® (in the sense thak’ is relatively bounded with respect t4°).

The utility of this approach is that (i) and (ii) are much easier to check for a spatially invariant operator than they
are for a spatially periodic one.

Ill. FREQUENCY REPRESENTATION OFPERIODIC OPERATORS

In this section we briefly discuss the frequency domain representation of spatially penpedators We then
show how this representation can be used to convert a spatially pesgstieminto a family of matrix-valued
LTI systems. For a detailed account the reader is referred to [5] and [12].

Let ¢)(k) and (k) denote the Fourier transforms of two spatial functigris) and¢(z) respectively. Ify) and
¢ are related by a linear operatgr= A1, then so are) and$ and we have

/Aa;x )dy <5 bk /Akn @)

where A and A are kernel functionsin the spatial and Fourier domains, respectively; see Figure 1 (left). It is
shown in [5] [12] that the most general spatially periodic operatowith spatial periodX = 27/Q can be
represented in the Fourier domain as an operator with a kernel function of the form

> Aik) 6(k — k- Q). (5)
leZ

Thus the kernel function corresponding fois composed of parallel and equally-spaced ‘impulse sheets’ which
can be visualized in Figure 1 (right). [5] further describes how the particular structure ¢(batbws (4) to be
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given a matrix representation

$(0—Q) . IICENY))
L Ag(o—Q) A_1(6—-Q) A_5(0-Q)
o | =1 L Ag(o) ie - ON N 6€1[0,9Q), (6)
3(6+Q) P (049)

Ay (649Q) A1(6+Q) Ag(0+)

for which we adopt the notation
o = Ag y.

In other words, a general spatially periodic operatocan be described by a family of (bi-infinite) matricds
parameterized by a variable
Remark 1:We emphasize that thél( -) in (5) and (6) can be matrices. Thus, in generd), has a “block”
structure. But throughout this paper and for the sake of simplicity, we choose not to explicitly refer to this block
structure, even though all our results hold for matrix-valugd- ). In the same light, we do not refer directly to
the Euclidean dimension of the vectar$- ) and ¢( - ). .
Spatially invariant[13] and spatially periodic pure multiplicatioroperators constitute special subclasses of
spatially periodic operators. In the framework established ahdyds diagonalfor spatially invariant operators,
and Toeplitzfor periodic pure multiplication operators.
Example 1: A = 9, and F(z) = cos(Qx) have the following representations

‘\,:'
I
[e=)
Nl

Ap = JO+58m

N

for every 6 € [0,9), respectively. Notice that sincé is spatially invariant, it is fully described by ifSourier
symbol Ay (k) = jk, k € R. And it is the samples ofi,( -) that make up the diagonal of, for everyd. We
have dropped thé subscript inF, as it is independent of this variable. L]

Remark 2:1t is possible to define a unitary operatef, [5] such thatyy = .# ¥, ¢y = .4y ¢, and thus
Ao = My A///e*. My is equivalent to thdérequency domain liftingoperation of [14] and [15] (see also [16]). By
the unitary property of the lifting operator it follows that

Q Q
> / trace[A; (k) A} (k)] dk = / trace[Ag Aj] df = / | Ag % db, 7)
ez 'R 0 0

with ||T'||%g := trace[T T*] being the square of the Hilbert-Schmidt ndrof 7. ]

Finally, given a spatially periodic system in state-space form (1) with spatially peribdi¢, andC, one can
replace each of these operators with its bi-infinite matrix representation to obtain the family LTI systems (2).
Example 2: Consider the spatially periodic heat equationzoa R

At z) = (92— a cos(Q)) ¥(t,z) + u(t,z),

y(t,z) = P(t,x), ®)
with real a # 0 and 2 > 0.2 Clearly A = 92 + « cos(Q2z) with domain
9 do . d? 9
2 = {p€ L*R) | ¢, T absolutely contlnuousdﬁ € L“(R)},

1The Hilbert-Schmidt norm of an operator is a generalization of the Frobenius norm of finite-dimensional m&tﬁjh%s =
Zmn |@mn|? = trace[AA*].
2By 0y (t, ) and 82+ (t, =) we mean the spatio-temporal functiofgy and 82 evaluated at the poirt, ).
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B = C = §(x) are the identity convolution operator di¥(R). Rewriting the system in its matrix representation

O o(t) = Aatbe(t) + Boug(t),

yo(t) = Coo(t), )
with
Ag=| —(0+on? |—af = O = . By=Cy= 1 , (10)
. % 0 -
— - —1
%
Gop(w) = Cp (JwI — Ag)™'By = 2 ju+(0+Qn)? (11)

NI

[N]])

Notice that (9)—(10) is now fully decoupled in the varialleln other words, (8) is equivalent to the family of
state-space representations (9)—(10), and transfer function (11), all parameterized by the #arifghle). =

IV. PROBLEM SETUP
Let us now consider a system of the form

hY(t,x) = AyY(t,z) + Bul(t,x)
= (A° + B°€F C°)4(t,x) + Bu(tx), (12)
y(t,x) = C"/)(t"r)a

wheret € [0, 00) andz € R with the following assumptions. The (possibly unbounded) operatr3°, C° are
spatially invariant, and the bounded operatB;sC' are spatially periodicF'(x) = 2L cos(2x) with L a constant
matrix, ande is a complex scalard®, B°, C° and E := B° F C° are all defined on a dense domaihcC L?(R)
and are closedu, y, and are the spatio-temporal input, output, and state of the system, respectively. We will
refer to A as theinfinitesimal generatoof the system.

Comment on NotationTo avoid clutter, we henceforth drop thé ™ on the Fourier symbol of operators and
frequency domain functions. For example, we ukg - ) [instead oon( -)] to represent the Fourier symbol of
the spatially invariant operatof®. =

As shown in detail in [5] and also briefly in the previous section, the system can be represented in the (spatial)
Fourier domain by the family of systems

Opbg(t) = Age(t) + Boue(t)
= (A3 + eByFCH) vo(t) + Boug(t) (13)
yo(t) = Corbe(t),

parameterized by € [0,9). Here B, andCy have the general form of the operator in (6) [i.e. can possess any
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GO

=l

Fig. 2. G° has a spatially invariant infinitesimal generaté?. The LFT of G° and the spatially periodic multiplication operataf’ yields
a system which has a spatially periodic infinitesimal generator

number of nonzero sbudiagonald], has the form given in Example 1 Wiﬂj] replaced byL, and

AS=| A0 |, B =| B6.) |, Co=| C°0.) |, &=BoFcq=| " O A1) (14)
. . : A1(6,) 0

with 6,, := 60 + Qn, n € Z, and
Ai(+) == B°()LC°(- —=Q), A_4(-) == B°(-)LC°(- +9Q). (15)

We emphasize that the convention used in the representatiép iof (14) is the same as that used in (6); for
example thex™ row of & is {---,0, A1(0,,),0,A_1(6,),0,---}.

Remark 3:We note that takingF'(z) to be a pure cosine is not restrictive. The results obtained here can
be easily extended to problems wheréx) is any periodic function with absolutely convergent Fourier series
coefficients. The inclusion of higher harmonics(®fin F'(z), namely functions of frequend(?, 352, etc, would
not reveal new interesting phenomena and would only complicate the algebra. =

Remark 4:The system (12) can be considered as the LFT (linear fractional transformation [17]) of a spatially
periodic systemG° with spatially invariantinfinitesimal generator®,

A°| B B°

G°=|cCclo o0

c°lo0 0
and the (memoryless and bounded) spatially periodic pure multiplication oper&tar) = € 2L cos(Qx), see
Figure 2. =

Stability Analysis and Sectorial Operators
It is shown in [5] that for a general spatially periodic operatowe have

(4) = |J =(Ag). (16)

In the case wherel is spatially invariant [and thusly = diag {--- , Ao(0y), - - - }], (16) further simplifies to

S(A4) = Zp(Ao(k)). 17)

keR

Example 3:Let A = —(92 + »?)2. Then Ay (k) = —(k? — »?)?, see Figure 3 (left). On the other hand, since
Ap(-) is scalarXp(Ag(k)) = Ao(k) for everyk. It is easy to see thad,( - ) takes every real negative value and
thus from (17)A has thecontinuous spectrurit(A) = (—oo,0], see Figure 3 (center). L]

Remark 5:When A is spatially invariant a helpful way to think abouk(A) in terms of its symbol4, is
suggested by the previous example. First plgtAo(-)) in the ‘complex-planex spatial-frequency’ space, as in
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Im Im

Fig. 3. Left: Representation of the symhdb( - ) of Example 3 in ‘complex-plang spatial-frequency’ space. Cent&i(A) in the complex
plane. Right: For spatially invariam, the (diagonal) elements o4y are samples of the Fourier symhdb( - ).

Figure 3 (left) of Example 3. Then the orthogonal projection onto the complex plane of this plot would(glye
as in Figure 3 (center). This can be considered as a geometric interpretation of (17). In Example 3,6ince
is real scalar and takes only negative values, this projection yields only the negative real axis. But in general
if Ag(-) € C?*4, this projection would lead tg curves in the complex plane. Notice also that in this setting,
¥ (Ay) is the projection onto the complex plane of samplesigfA,( -)) taken atk = 6,, = 6 + Qn, n € Z,
in the ‘complex-planex spatial-frequency’ space. This can be considered as a geometric interpretation of (16).
Figure 3 (right) shows these samples in the ‘complex-plagpatial-frequency’ space for a scaldr L]

We next introduce a special subclassh@lomorphic(or analytic semigroups. The reader is referred to [9]—
[11] for a detailed discussion. Supposk is densely definedp(A) contains a sector of the complex plane
larg(z —a)| < 5 47,7 >0, a € R, and there exits som&/ > 0 such that

M T
f —a)] < =+1. 1
P or |arg(z —a)| < 5 T (18)
Then A generates a holomorphic semigroup and we wifite 57 (v, o, M) [11] [9]. We say thatA is sectorial

if A belongs to some?’ (v, a, M).
Finally, a semigroup is called exponentially stable if there exist positive constérasd ¢ such that [2]

I(zI = A7 <

et < Me ¢ for t > 0.

Theorem 1:Let A be sectorial. Then iE3(A) C C~, A generates an exponentially stable semigroup.
Proof: If A is sectorial it defines a holomorphic semigroup and thtisis differentiable fort > 0 [10]. Then
[8] shows that this is sufficient for the spectrum-determined growth condition to hold. In particaldd jfc C—,
A generates an exponentially stable semigroup. ]

H2-Norm of Spatially Periodic Systems
We define thel2-norm of an exponentially stable spatially periodic syst6nas

Q roo
Gl = 5= [ waceigott) Gi(o)atas

where Gy (t) = Cy et By is the impulse response of the system (13). The intuition for this definition and the
proof of the following theorem can be found in [5].
Theorem 2:Consider the exponentially stable spatially periodic LTI systé&nwith spatial periodX = 27/Q
and state-space realization (12)—(13). We have
1

1 & * & *
1Gl3: = %/0 trace[CoPp Cjl df = %/0 trace[B; Qg By do,

wherePy and Qg are the solutions of thed{parameterized) algebraic Lyapunov equations
Ag Py + P&A; = *BeB;, A; Qo + Qg Ay = *C;CG.
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V. PERTURBATION ANALYSIS OF THE H2-NORM

The difficulty in calculating the/2-norm using Theorem 2, is that unleds, B, andCy are diagonal (i.e.(
is a spatially invariant system), the operatdisand Qg are “full”, meaning that they possea#i of their (infinite
number of) subdiagonals. This makes the computation oftfherorm numerically intensive. Namely, one has
to solve aninfinite-dimensionakblgebraic Lyapunov equation to find the operaiyr (or Qy) for every value of
6 € [0,9). In this section we will see how one can use analytic perturbation techniques to compié-tioem
in a simple and numerically efficient way, and without having to explicitly find the fylland Qy operators.
Such a perturbation analysis is very useful in predicting general trends and extracting valuable information about
the H2-norm.

Let us now consider the general setup of (12), where we d¢akea smallreal scalar. We also assume that both
A° andA = A° + ¢ E define exponentially stable strongly continuous semigroups (also kno@g-asmigroups)
on L?(R) [2], and thatB andC are spatially invariant operators. We are interested in the changes h’therm
of this system for small magnitudes efand different values of the frequen€y.

Let us define

Pole) == P+ P+ 2P+,

with P; (€) = Py(e). Notice that this implies?{™* = P{™ for all m = 0,1,2,---. Our aim is to findP{™ by
solving the Lyapunov equation

Ag(€) Po(e) + Pole) Aj(e) = —By B (19)
\[8
(AG+ &) (P + P 42 PP 4.0 ) + (20)

(P + e PM + EPP 4+ ) (A + &) = —By By,

and compute th&(2-norm of the system using Theorem 2
1 Q
G2, = — / tracelCo Po(€) C;] db.
27T 0

It is easy to see from (20) that

AP + PP A = —By B;, (21)
AP + PV AT = —(& P + P &), (22)
ASPP + PP AT = —(& P + P &), (23)

Now sinceAj and By B; are diagonal in (21), so is’éo). In (22), the right hand side operator has the structure of
being nonzero only on the first upper and lower subdiagonals, and ﬁg}%mherits the same structure (since
Ajp is diagonal). In the same manner, one can show?ﬂé%?t is only nonzero on the main diagonal and the second
upper and lower subdiagonals, and so on for oﬂﬁgi’). We have

s )
P =1 Ry |, PP=| 0 B pP)

0 Qo(0n) 0 .|
Pl(en) 0 .

P2(0n) 0
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where then™ row of P! is equal to{--- ,0, P\ (6,),0, P} (6,),0,---}, and then row of P* is equal to
{' o 50>P2(9n)70a QO(Hn)7 0, P;(en)voa T }
Remark 6:1t is important to realize that, not only -@ém) not a “full” operator, it has at mostn nonzero
upper and lower subdiagonals. Also, fﬂém) for odd m have zero diagonal and are thus trace-free operaiors.
Remark 7:Note that even thougtdy = Aj + €& has only one nonzero subdiagonal [see (1B)](e) =
779(0) + ePél) + ... possesses all of its subdiagonals. This is precisely the reason why direct calculaigmnof
Theorem 2 is computationally difficult. =
Now returning to (21)-(23)P£0), Pél) and Pf) are found by equating, element by element, the bi-infinite
matrices on both sides of these equations. For example, (21) leads to

Ao(0 + Qn) Po(0+Qn) + Po(6 + Qn) AL(0 + Qn) = —B(6 + Qn) B*(6 + Qn)

for everyn € Z, and@ € [0,2). But notice that as: assumes values over all integers &dhanges ino, ),
k = 6 + Qn takes all real values, and one can rewrite the above equation as

Ao(k) Po(k) + Po(k) Ag(k) = —B(k) B*(k),

for all k¥ € R. Applying the same procedure to (22)-(23), one arrives at
Ao(k) Po(k) + Po(k) Ag(k) = —B(k) B*(k), (24)
Ao(k) Pi(k) + Pi(k) Aj(kE— Q) = —(Al(k) Py(k—Q) + Py(k) A* (k- Q)), (25)

Ao(k) Qo(k) + Qo(k) Ag(k) = 7(141('1‘7) Pr(k) + Pi(k) Al (k) + A_1(k) P1(k + Q)
+ Pk +Q) A*_l(k)), (26)
and so on for all nonzero diagonals 73§’">, m=3,4,---.
Remark 8:Notice that from the above equations, one first fidt$ - ) from (24), thenP;(-) from (25), and
so on. In other words, computing the subdiagonal®pbecomes “decoupled” in one direction. This decoupling
would not have been possible had we not employed a perturbation approach and had attempted to solve (19)
directly. L]
Returning to the calculation of th&2-norm, let us first separate the diagonal parﬂé?) by rewriting it as

P =P + PO where

PO o= Qo) |,

andP{? contains the rest oP}>. Clearly trace[Cy P> C;] = 0. Also, recall that
trace[Cy P €3] = 0, m=0,1,2,-. 27)

Now one can write the following

Q
IGl3. = L trace[Cy Py () Cj] O
2m Jo
Lo 0) x| 20 p(2) o 1
= 5 ; trace[Co Py Cy + € Co Py~ Cyldf + O(€")
1@ (0) A% 2 5 52 s 4
= 3 ; trace[Co Py~ Cy + € Co Py Cyldd + O(€%),

where the absence of odd powers @ due to (27), and the last equation follows from the fact thate[Cy 7'59(2) Cyl=
0. Next, using the unitaryness of the lifting transform we have

Q 0o
/ trace[Cy PS" C31d6 = / trace[C (k) Py(k) C* (k)] dk,
0

— 00
o0

/Q *(2) * *
traceCo P 5] do — / trace[C(k) Qo (k) C* (k)] dk,
0

— 0o
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and we arrive at the final result
1 oo
Gl = 5 / trace[C(k)Py(k)C* (k) + €2 C(k)Qo(k)C* (k)] dk + O(e*). (28)

Remark 9:Let us stress again the important advantage of the above perturbation analysis in comparison to
the method of Theorem 2. In the direct method of computing#ienorm proposed in Theorem 2, one has to
solve a family ofinfinite-dimensionaloperator) algebraic Lyapunov equations, whereas the perturbation method
reduces theé/{2-norm computation to that of solving a family @ifite-dimensiona(matrix) Lyapunov/Sylvester
equations (24)-(26). L]

In summary, we have the following.

Main Result of Perturbation Analysis 6{2-Norm: Consider the exponentially stable spatially periodic LTI
systemG, with spatial periodX = 27/ and state-space realization (12). Then for small valuelg|ahe H?2-
norm of the system (12) can be computed from (28), whre-) and Qo(-) are solutions of the family of
finite-dimensional Lyapunov/Sylvester equations described by (24)-(26). ]

VI. EXAMPLES

As an application of the perturbation results of the previous section, we first investigate the occurrence of
‘parametric resonance’ for a class of spatially periodic systems. Parametric resonance occurs when a specific
frequencyQes Of the periodic perturbation resonates with some ‘natural frequeaay the unperturbed system,
leading to a local (ir2) change in system behavior [3]. In the systems we consider in this section, this change
in behavior is captured by the value of th&-norm.

Example 4:Let us consider the periodic PDE

oy = —(02+ )Y — cp + ecos(Q)Y + u
Yy Y, (29)
with 0 # > € R andc¢ > 0. Comparing (29) and (12) we have
Ao(k) = —(k2 — 522 —¢, B°(k)=1, C°(k)=1, B(k)=1, C(k)=1, L= %
For this system, the function& (k) and Qo (k) of the previous section simplify o
-1
Rolk) = 5 (30)
1 -1 -1
Qo(k) = (Ao(k:))2 (2A0(k—Q) + 2A0(I<:+Q)) (31)
= 4(Po(k))” (Po(k — Q) + Po(k + ),
and it is our aim to find thé{?>-norm
1 (oo}
Gl = 5= [ (Rolk) + Q) dk + O (32)

for different values of the paramet@r> 0. More specifically, we are interested in the valuefdfor which the
H2-norm is maximized.
From (30),Py(k) = %m The first plot of Figure 4 shows,( - ), while the second showB, (- — )
and Py(- + Q) (dashed), for a given value d& # 0. As Q is increasedPy(- — ) slides to the right and
Py(- + Q) to the left. From (31) it is clear that to fin@,(-) for any 2, one would sum the two functions in
the second plot and multiply the result by the square of the first plot. The interesting question now is, for what

value(s) ofQ € (0, c0) would theH2-norm in (32) be maximized.

3To find Qo (k) one needs to first find; (k), but we have omitted the details for brevity.
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Fig. 4. Above: Plot ofPy(-). Below: Plot of Po(- — Q) and Po(- + 2) (dashed).

Fig. 5. Left: Plots of Example 4 fosr = 1 andc = 0.1. Notice that the first graph is plotted agaiksend the second again&t Right:
The plot of H2-norm of the same example, but calculated by taking large truncations oAghéSy, Co matrices and using Theorem 2.

One can easily see that &— 0, the peaks of(- — Q) and Py(- + ©2) merge toward those ofP; /(- ))2,
thusffio Qo(k) dk grows and hencgG||2,. grows? This is not surprizing; a§ — 0, the perturbation is tending
toward a constant functiofi'(x) = cos(Qz) — 1. This results in shifting the whole spectrum 4f toward the
right-half of the complex plane, thus increasing tHé-norm of the perturbed system.

But we are more interested in frequenciess- 0 that lead to a local (irf2) increase in theé/2-norm. Now
notice that a different alignment of the peaks can also occur, which leads to another local maximuriéf the
norm as a function of2. This happens when the peak Bf(- — Q) at k = —» + 2 becomes aligned with the
peak of (Py( - ))2 at k = », and, simultaneously, the peak B§(- + Q) atk = » — 2 becomes aligned with the
peak of (P (- ))2 atk = —s. Clearly this occurs when

—2+ Qres = 6 =  es = 2 ¢

This result agrees exactly with that obtained in [12], where in the analysis of the same problem it is shown that the
part of the spectrum ofl closest to the imaginary axis ‘resonates’ with perturbations whose frequency satisfies
the relation2 = 2 s.

Consider (29) withbr = 1 andc = 0.1. For this systemffoOo Py(k) dk =~ 4.74. Figure 5 (left) shows the graphs
of Py(-) (plotted againsk) and f_oooo Qo(k) dk (plotted againsf2). The peak af2 = 2 in the lower plot verifies
the resultQ,es = 2 sr obtained above.

Figure 5 (right) shows th&{?-norm of this system computed by taking large enough truncations afithe
By, Cp matrices and then applying Theorem 2. The figure shows that the trends were indeed correctly predicted
by the perturbation analysis; the peak€at 0,2 correspond to those oﬁfooo Qo(k) dk.

4Remember thaf (k) is independent of2, and thus/°?_ Py (k) dk remains constant for differerst.
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Fig. 6. The plot of Example 4 withe = 1 andc = 0.1 and a purely imaginary perturbation.

Fig. 7. Plot of Example 5 foer = 1 andc = 0.1.

Now consider (29) withbe = 1 andc = 0.1, but with € replaced byej (i.e., a purely imaginary purturbation).
Obviously the unperturbed system remains the same as before andﬁ’e‘;ng(k) dk =~ 4.74. Figure 5 shows
the graph offfoOO Qo(k) dk, which demonstrates that for this system the purely imaginary perturbation reduces
the 72-norm at all frequencies. We address the physical interpretation of such a perturbation in the Appendix.

We continue with more examples to demonstrate that by appropriately choosing the frequency of the perturba-
tion, one cardecreaseor (as in the previous example) increase #&norm of the unperturbed system.

Example 5:Let us consider the periodic PDE [5]

O = —(0%4 )% — cp + ecos(Qx) ¥ + u
y = 9. (33)
Comparing (33) and (12) we have
Ag(k) = —(k* = 4% —¢, B°(k)=1, C°k)=jk, B(k)=1, C(k)=1, L= %

The difference between this system and (29) is that 68rns a spatial derivative. The plot of Figure 7 demonstrates

ffooo Qo(k) dk for 2 = 1 andc = 0.1. Notice that the peak &2,s = 2 remains the same as in Figure 5, but

we now have a decrease at small frequencies. This is due to the derivative og&ratay,. Finally, notice the
agreement of the perturbation analysis here with the (non-perturbation) calculations for the same system in the
Third Example of SectiofVII in [5]. Our perturbation methods correctly predict the increas@ at 2 and the

decrease around ~ 0.4 of the H2-norm. n
Example 6:The following system is motivated by channel flow problems

1 2
% +c) 0
— R
Ao(k) = gk —5(k*+o)

B0y =[18), =08 B =[], =[] p=5[7]

We perform numerical calculations fdt = 6, c = 1. We have[”"_ trace[C (k) P,(k)C* (k)] dk ~ 20.72. Figure 8
shows that thé{2-norm can be decreased by the the application of periodic perturbations with frequeacy?.
It is interseting that if one uses the locations of the peaks in the first plot of Figure 8 tocfind).75, then
from the peak af2.s = 1.6 in the second plot it seems that the relationsQjp; ~ 2sr = 1.5 still holds with an
acceptable error even for thigon-scalarexample. [
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Fig. 8. Graphs of Example 6 faR = 6 andc = 1.

VIIl. STABILITY AND THE SPECTRUM-DETERMINED GROWTH CONDITION

In the literature on semigroups, there exist examples in which) lies entirely insideC—, but ||e?| does not
decay exponetially; see [6] and more recently [7]. In such cases it is said that the semigroup does not satisfy the
spectrum-determined growth conditi¢®]. The determining factor in the examples presented in [6] and [7] can
be interpreted as the accumulation of the eigenvalued,ofround=+;joco in the form of Jordan blocks of ever-
increasing size (i.e. as the eigenvalues tend-jeco their algebraic multiplicity increases while their geometric
multiplicity stays equal to one). But such cases are ruled out when one deals with holomorphic semigroups, which
is the reason we consider these semigroups in this paper.

Our ultimate aim in this section is to verify exponential stability. By Theorem 1, in order to prove exponential
stability of a holomorphic semigroup with infinitesimal generatorit is sufficient to show thab(A4) ¢ C.
Hence, in the first part of this section, we give conditions under whichitleperators described by (12) generate
holomorphic semigroups. In the second part, we find sufficient conditions which guabiee- C—.

Once again, the setup is that of (12) wheris a small complex scalar. In addition, assume thgtk) € C1*¢
is diagonalizable for every € R.

Conditions for Sectorial Infinitesimal Generator

To find conditions under whichl in (12) will define a holomorphic semigroup we have to check the condition
(18). Since the Fourier transform preserves norms, (18) is equivalent to chéi¢kihg A)~'|| < M/|z — | for
z belonging to some sector @. This involves finding the inverse of the operatdr— A and then calculating
its norm. Such a computation can be very difficult sificé — A)*l has the form (5) [also depicted in Figure 1
(right)], i.e., it has an infinite number of impulse sheets. On the other hand, fifjdidg— A°)—1|| is very easy,
due to the diagonal structure @i°. Indeed|| (21 — A°) || = supycg ||(21 — Ao(k)) Y.

Thus to establish conditions fot to be sectorial, we again use perturbation theory. We first find conditions
under whichA° is sectorial. We then show that = A° + ¢ E remains sectorial i’ is ‘weaker’ thanA° in a
certain sense we will describe, andeifs small enough.

In the next theorem we present a condition for a spatially invatightvith symbol Ay (k) to be sectorial.

Theorem 3:Let Aq(k) be diagonalizable for everly € R, and letU (k) be the transformation that diagonalizes
Ag(k), i.e., Ag(k) = U(k) A(k) U= (k) with A(k) diagonal. Letx(k) := ||U (k)| ||U~*(k)|| denote the condition
number ofU (k). If sup,cp (k) < oo, and for everyk € R the resolvent sep(Ay(k)) contains a sector of the
complex plang arg(z — a) | < § +« with v > 0 anda € R both independent of, then A° is sectorial.

Proof: See Appendix. [ |
This theorem has a particularly simple interpretation whkyi-) is scalar. In this case(U(k)) = 1 for all
k € R. Now sinceAq(-) traces a curve in the complex plane, by Theorem (3) if this curve stays outside some
sector|arg(z — a)| < § 4+, v > 0, of the complex plane theA® is sectorial.
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The following theorem is from [11]. It uses the notion refative boundedned®] of one unbounded operator
with respect to another unbounded operator.
Theorem 4:SupposeA® € (v, «a, M) and E = B° F C° is relatively bounded with respect t4° so that

B¢l < allgll + 0lA°¢], €2, (34)

with 0 < a < oo and0 < ble| < 1/(1 + M). ThenA = A° + ¢ E is a sectorial operator. [ |
This theorem says that il° is sectorial, then so isl = A° + ¢ F if F is weaker thanA® in the sense of (34)
and if |e| is small enough. Naotice that at this point, condition (34) can not be reduced to a condition in terms
of Fourier symbols (i.e. a condition that can be checked pointwigg ias in Theorem 3. This is becauggis
not spatially invariant. But once the exact form of the operaf®tsand C° is known, (34)can be simplified to
a condition on the symbols of°, B° and C°. Let us clarify this statement with the aid of an example.
Example 7:Consider the periodic PDE

O = —(0%4 3% — cp + €0, cos(Q)Y + u
y = 9.

It is easy to see thatl® = — (9% + »?)? — ¢, B® = 0, andC° = §(x) (the identity convolution operator). By
formal differentiation we have

E¢ = 9; cos(Qz)yy = —Qsin(Qx) ) + cos(Qx) 0, 1.
Using the triangle inequality anflisin(Qx)|| = || cos(Qx)|| = 1 we have
IEI < [Q¢l + 10 9l (35)

Thus we have effectively ‘commuted out’ the (bounded) spatially periodic operatbr and are left with only
spatially invariant operators on the right of (35). Hence, after applying a Fourier transfomation to the right side
of (35), a sufficient condition for (34) to hold is that

Q] + |k] < a+b|(k* -2 +¢, keR,

which can be shown to be satisfied for large enough |2| andb > 0. m
Remark 10:The above example makes clear the notionFbbeing ‘weaker’ thanA® that we mentioned at
the beginning of this subsection. If in Example 7 we Ha®¥l= 9% andC° = 9% andv + u = 5, then E would
contain a5™ order derivative, whereas the highest ordedgfin A° is 4. This would mean that (34) can not be
satisfied for any choice of andb. L]

Conditions for Infinitesimal Generator to have SpectrunCin

The final step in establishing exponential stability is to show @) C C~. Unfortunately it is in general
very difficult to find the spectrum of an infinite-dimensional operator. Thus we proceed as follows. We consider
the (block) diagonal operatotd), 6 € [0,€2). This allows us to extend G&gorin-type methods (existing for
finite-dimensional matrices) to find bounds on the locatior20fy), Ag = Aj + €&. In turn, we use this to
find conditions under whicft(Ay) C C~, and thus:(A4) Cc C~.

In locating the spectrum of a finite-dimensional matffixe C?*¢, the theory of Gegorin circles [18] provides
us with a region of the complex plane that contains the eigenvalu&s @his region is composed of the union
of ¢ disks, the centers of which are the diagonal elementf,aind their radii depend on the magnitude of the
off-diagonal elements [18]. This theory has also been extended to the case of finite-dimensional block matrices
(i.e., matrices whose elements are themselves matrices) in [19]. Next, we further extend this theory to include
bi-infinite (block) matricesAy.

For the operatord = A° + ¢ F, take B, to be the set of complex numbetsthat satisfy

omin(2] — Ao(k)) < el (| A-1(R) + |41 (R)II), (36)

whereomin(2I — Ag(k)) denotes the smallest singular value of the mattix- Ag(k).
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Fig. 9. Left: The®y  regions viewed in the ‘complex-plane spatial-frequency’ space (the disks are parallel to the complex plane).
Center:X(Ayp) is contained inside the union of the regiofy . Right: The bold line show&(A°) and the dotted region contaiiis(A),
A= A°+€E.

Lemma 5:For everyf we haveX(Ay) C &4, where

& = |J B,

Proof: See Appendix. ner [ |
Example 8:Let us consider the periodic PDE [5]
O = —(02 4% — cp + ecos(Q) e + u
y = 9. (37)
We have
Ag(k) = —(k* = 4% —¢, B°(k)=1, C°k)=jk, B(k)=1, Ck)=1, L= %

From (15), A, (k) = %(k -Q), A_4(k) = %(k +Q), and thus||A_; (k)| + |41 (k)[| = & (|k — Q| + |k + Q).
Hence (36) leads to

le|
2

Qlel [k <Q

Umin(ZI_AO(k)) = |ZI_A0(k)| < |k‘|e| |k| >0’

(k-9 + |k +Q)) = {

which means that the s€iy is composed of the union of disks with centers4ai(6,,) and radii%(\@n -Ql+
|6, + ©2]). This is nothing but an extension of the classical $gerin disks to bi-infinite matrices. Figure 9 (left
& center) showSy in the complex-plane: spatial-frequency space and Ghrespectively. L]
Remark 11:The set
Y. (M) = {z€C| omin(z] — M) <¢} (38)
{z € C||(zI — M)y| < e for some|p| =1}
= {z€C|zeX(M+ 2) for some||Z|| < e}

is called thez-pseudospectruraf the matrixA/ [20]. ClearlyX.. (M) C 2. (M) if &’ <e, andX. (M) = (M)
for e = 0. The pseudospectrum is composed of small sets around the eigenvalliésFafr instance ifM has
simple eigenvalues, then for small enough values thie pseudospectrum consists of disjoint compact and convex
neighborhoods of each eigenvalue [21]. =

5We would like to point out that Figure 9 (left) is technically incorrect; once the spatially invariant system is perturbed by a spatially
periodic perturbation it is no longer spatially invariant and thus can not be represented by a Fourier symbol. Hence its spectrum can no longer
be demonstrated in the complex-planepatial-frequency space. Figure 9 (center) demonstrates the correct representation oEgoeirGer
disks for Ag.
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Remark 12:Comparing (38) and the definition @8, in (36), it is clear thatB, = X.(A4y(k)) with ¢ =
le] (|[A=1 (k)| + || A1(k)||). Thus for everyk € R, (36) defines a closed region Gfthat includes the eigenvalues
of Ao(k}) u

We now employ Lemma 5 to determine whetB#rA) resides completely insidé—, as needed to assess system
stability. Take®. to be the closed disk of radiusand center at the origin, ari; to be the region described
by (36). Define the sum of sets iy + s = {2z | 2 = 21 + 22,21 € 3,21 € U;}. Also, for everyk € R let
Amax(k) represent the eigenvalue df (k) with the maximum real part, and le{k) be defined as in Theorem 3.

Theorem 6:For everyk, B, is contained inside p(Ao(k)) + D) With

r(k) = el (A= (B)[| + [ AL (B)]]) 5(K).

In particular, if (A% c C~ and
r(k) < |Re(Amax(k))| + 3 (39)

for everyk € R and somes < 0 independent o, thenX(A) c C~.
Proof: See Appendix. ]
Example 9:Once again we use the scalar system of Exampié/8. = 1 since Ay (k) is scalar/Re(Amax(k))| =
|(k* — 5%)? +¢|, and

A B + AR = 5 ([k = Q[+ [k + Q).

N | =

Thus condition (39) becomes
lel
2

If this condition is satisfied for somg < 0, the dotted region in Figure 9 (right) will remain inside" and thus

Y(A)cC. [

To recap, to assess exponential stability we first find sufficient condition$ such that it belongs to the class
of operators for which the spectrum-determined growth condition holds. These are conditions under\vigich
sectorial. We then find sufficient conditions fdrto haveC~ spectrum. We do this via an extension of &gorin
circles to bi-infinite (block) matrices.

(Jk=Q+k+Q) < |[(k* = )%+ |+ 5.

VIIl. CONCLUSIONS ANDFUTURE WORK

We use perturbation analysis to find a computationally efficient way of revealing trends H2tmerm of
spatially periodic systems. We show that for certain classes of systems, the periodicity can be chosen so as to
increase the{2-norm or induce parametric resonance. An application of this would be in mixing problems. It
is also shown that th&(2-norm can be made to decrease for an appropriate choice of the frequency of the
perturbation. This would be the desired scenario in the design of the body of aircraft. We demonstrate that for
certain scalar systems, the value of the spatial period that achieves the desired increase/decrease mgrthe
can be characterized exactly based on the description of the nominal system.

The methods presented here can also be used in systems with many spatial directions. For example, consider
the PDE

Yy = wyy + 1/)m +cp + €COS(Q$W

with y € [-1,1] andz € R. To put this system into the developed framework one would only have to perform a
discrete approximation of the opera@j with the appropriate boundary conditions.

We also study the problem of checking the exponential stability of a spatially periodic system. We do this
by (i) finding conditions under which thd-operator is sectorial (i.e., generates a holomorphic semigroup) and
thus satisfies the spectrum-determined growth condition, and (ii) deriving conditions which guarantéeh#isat
spectrum contained inside the open left-half of the complex plane.

Future research in this direction would include an exact (analytical) characterization of the frequencies for
which the H2-norm is most increased/decreased for the general case of matrix-valugd The perturbation
methods presented here could also be generalized to bi-infinite Sylvester equations which arise frequently in fluids
problems.
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IX. APPENDIX
Proof of Theorem 3
It is shown in [22] that a sufficient condition fot° to be sectorial is that(A°) contain some right half plane
{z € C|Re(z) > u}, and
llz(zI — A°)7Y| < M for Re(z) > p,

for somey > 0 and M > 1.

Now since Ay (k) € C7*9 has simple eigenvalues for evety there exists a matri¥/ (k) such thatAd(k) =
U(k) A(k) U=1(k) with A(k) a diagonal matrix. Let\;(k), i = 1,--- ,q denote the diagonal elements &fk).
Clearly these are also the eigenvaluesdgfk). Thus we have

221 = 4% < sup (|=(=1 = Ao(k) ™)
keR

< sup (I0W) 1T E) 121 - AG)))
keR

B 2]
- ilelﬁ (Kv(k) dist[z,Ep(Ao(k))])

) ¥
max SUp

kER <diSt[Z> Yp(Ao(k))] )7

IN

where kmax := supycg £(k).
Let us now choose the positive scalaf’ = (1 + kmax)M, M > 1, and consider for a giveh the region of
the complex plane where
2| /

>
maX dist[z, Sp(Ao (k)]
This region (which contains the eigenvaluggk)) is contained inside the union of the circles

|2 / .
- > M — 1, . q,
Kmax ‘Z—)\i(kiﬂ = s ? q

which are themselves contained inside the larger circles

e-ap) < DWL g (A1)
Notice that (A1) describes circles whose radii increase [&¢k)|/M, M > 1, as their centers\;(k) become
distant from the origin. Clearly a sufficient condition for these circles to belong to some open half{plane
C|Re(z) < p} for all & € R and large enoughV/ is that ¥y(Ao(k)), £ € R, reside outside some sector
|arg(z —a)| < § 47, v > 0, of the complex plane.
Finally, if the circles (Al) are contained in some open half pldnec C|Re(z) < p} for all k£ € R, then for
Re(z) > p, z € p(Ao(k)) and we have

2|
fimax ek (dist[z, zp<Ao<k>>1) =M

and thus||z(z] — A°)~|| < M for Re(z) > p.

Proof of Lemma 5

We uselly T' Iy to denote thg2N + 1) x (2N + 1) [block] truncation of an operatdf' on ¢2, wherell
is the projection defined by

center

diag{~~~ ’(),],...’[’... 7]7()7...}’
~— ——
2N+1 times
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where I is the identity matrix. Notice thafly TIIy is still an operator or¢?; it made from the bi-infinite
T by replacing all entries outside the cen{@N + 1) x (2N +1) block with zeros. We now form the finite-
dimensional matrixIIy Ay HN’nNez by restrictingIly A IIy to the finite-dimensional spacly¢2. Clearly

In Ay HN]HNEQ has pure point spectrum. Hence using a generalized form of thi&g@n Circle Theorem [19]
for finite-dimensional (block) matrices, we conclude that

E(HNAGHN’HNW) C U By, C U By,
In|]<N ne’
where®By_ are regions ofC defined by (36). Since this holds for a@ll > 0, we haveX(Ay) C Gy.

Proof of Theorem 6

If U(k) diagonalizesdy(k), Ao(k) = U(k) A(k) U~1(k), andx(k) = ||U(k)|| ||U (k)| denotes the condition
number ofU (k), then from [23] the pseudospectrum 4f (k) satisfies
Yp(Ao(k)) +D. € X (Ao(k)) € Ep(Ao(k)) + Depry (A2)
for all £ > 0. Thus the first statement of the Theorem follows immediately from (A2) and the facthat
S (Ao(k)) with e = [e] ([[A—1(k)|| + A1 (k)||) [see Remark 12]. To prove the second statement;Jedenote
all complex numbers with real part less thare R. It follows from £(A4°) c C~ thatX(.Aj) c C~ for every
6. If (39) holds then

Bg, C Zp(Ao(0n)) +Drp,) C Cy

for everyn € Z, and from Lemma 5 we havg(Ag) C &9 = U,,cz Bo, C C;, for somes < 5" < 0 and every
6. Thus3(A) c C.

n

Interpretation of Imaginary States

It was shown above that one can decrease Hffenorm of certain systems by choosing the perturbation
amplitude A; to be purely imaginary (or, in general, skew-symmetric). This would yield a perturbed system that
can in general have states with nonzero imaginary parts. One could then ask the physical interpretation of such
a system.

For any operatord,, and functiony) one can write

Ap :Ar +jAl7 Ar7Ai ERnxna
¢:¢r +]¢17 wrawi eRn

Then the system equations can be written as

at(d’r +]1/’z) = (Ar +in)(wr +]¢2)
T
atd]r - Arwr - A’Lwl
O = Apthi + Aty

)
wr Ar *Ai 7/)7"
O = .
(4 Ai Ar | Wi
Clearly the state dimension is twice that of the original system with imaginary coefficients, bL{tm(}VE R2",

Let us give a simple example. Assume the heat equation, Atk je, € € R, i.e. A, = 92 — c+ je cos(Qx).
Then A, = Ay = 92 — ¢, A; = Ay = jecos(Qx), and thus

P Ve | 9 —c —ecos(Qx) Uy
s | T e cos(Qx) 2 —c Pi

=([%0 "] e [1]) [1]

which describes two identical systems coupled through the periodic perturbation.
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